Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy
نویسندگان
چکیده
منابع مشابه
The survival motor neuron protein in spinal muscular atrophy.
The 38 kDa survival motor neuron (SMN) protein is encoded by two ubiquitously expressed genes: telomeric SMN (SMN(T)) and centromeric SMN (SMN(C)). Mutations in SMN(T), but not SMN(C), cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gem...
متن کاملSalbutamol inhibits ubiquitin-mediated survival motor neuron protein degradation in spinal muscular atrophy cells
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is currently incurable. SMA is caused by decreased levels of the survival motor neuron protein (SMN), as a result of loss or mutation of SMN1. Although the SMN1 homolog SMN2 also produces some SMN protein, it does not fully compensate for the loss or dysfunction of SMN1. Salbutamol, a β2-adrenergic recepto...
متن کاملSurvival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor ...
متن کاملInvestigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by an...
متن کاملKH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy.
KH-type splicing regulatory protein (KSRP) is closely related to chick zipcode-binding protein 2 and rat MARTA1, which are involved in neuronal transport and localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. KSRP is a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing and mRNA decay. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-14313-z